Spi Connuent Vandermonde Matrices Using Sylvester's Structures Connuent Vandermonde Matrices Using Sylvester's Structures
نویسنده
چکیده
In this paper we rst show that a con uent Vandermonde matrix may be viewed as composed of some rows of a certain block Vandermonde matrix As a result we derive a Sylvester s structure for this class of matrices that ap pears as a natural generalization of the straightforward one known for usual Vandermonde matrices Then we present some applications as an illustration of the established structure For example we show how con uent Vandermonde and Hankel matrices are linked with each other and also we describe an O n algorithm for solving con uent Vandermonde least squares minimizations prob lems
منابع مشابه
A Fast Algorithm for the Inversion of Quasiseparable Vandermonde-like Matrices
The results on Vandermonde-like matrices were introduced as a generalization of polynomial Vandermonde matrices, and the displacement structure of these matrices was used to derive an inversion formula. In this paper we first present a fast Gaussian elimination algorithm for the polynomial Vandermonde-like matrices. Later we use the said algorithm to derive fast inversion algorithms for quasise...
متن کاملAn elementary proof of Sylvester's double sums for subresultants
In 1853 Sylvester stated and proved an elegant formula that expresses the polynomial subresultants in terms of the roots of the input polynomials. Sylvester’s formula was also recently proved by Lascoux and Pragacz by using multi-Schur functions and divided differences. In this paper, we provide an elementary proof that uses only basic properties of matrix multiplication and Vandermonde determi...
متن کاملSignal Flow Graph Approach to Inversion of (H,m)–quasiseparable Vandermonde Matrices and New Filter Structures
We use the language of signal flow graph representation of digital filter structures to solve three purely mathematical problems, including fast inversion of certain polynomial–Vandermonde matrices, deriving an analogue of the Horner and Clenshaw rules for polynomial evaluation in a (H, m)–quasiseparable basis, and computation of eigenvectors of (H, m)– quasiseparable classes of matrices. While...
متن کاملTransformations of Matrix Structures Work Again
In [P90] we proposed to employ Vandermonde and Hankel multipliers to transform into each other the matrix structures of Toeplitz, Hankel, Vandermonde and Cauchy types as a means of extending any successful algorithm for the inversion of matrices having one of these structures to inverting the matrices with the structures of the three other types. Surprising power of this approach has been demon...
متن کاملTR-2013004: Transformations of Matrix Structures Work Again
In [P90] we proposed to employ Vandermonde and Hankel multipliers to transform into each other the matrix structures of Toeplitz, Hankel, Vandermonde and Cauchy types as a means of extending any successful algorithm for the inversion of matrices having one of these structures to inverting the matrices with the structures of the three other types. Surprising power of this approach has been demon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998